Attribute Metadata Bulk Updates - Execute
Export the attribute metadata to a .csv file, edit in a spreadsheet like Google Sheets or Excel, then use to perform a bulk update in DataPancake.
Ensure you have completed How to Setup Attribute Metadata Bulk Updates
1. Open a new Snowflake worksheet

2. Run a select statement for datapancake.core.vw_datasource_all_attributes
The minimum field requirements to select are attribute_id, polymorphic_version_id
- for example:
select attribute_id, polymorphic_version_id
from datapancake.core.vw_datasource_all_attributes
where version_status = 'active';
This SQL statement includes key non-editable fields along with all editable fields:
select attribute_id, polymorphic_version_id, datasource_name, attribute_path,
attribute_name, source_data_type, data_platform_data_type, numeric_precision,
numeric_scale, use_datetime_format, datetime_format, attribute_record_status,
is_unique, is_primary_key, contains_enum_values, include_column_in_secure_view, include_array_in_code_gen, array_relationship_name, array_relationship_description,
array_relationship_type, array_relationship_join_type, raw_transformation_type, raw_transformation_expression,
raw_transformation_expression_comment, raw_null_value_expression,
semantic_layer_transformation_expression, semantic_layer_transformation_expression_comment,
raw_alias_name, semantic_layer_alias_name,
consolidation_regex_search, consolidation_sql_expression, attribute_last_updated_by, attribute_last_updated_datetime
from datapancake.core.vw_datasource_all_attributes
where version_status = 'active'
order by attribute_path;
These are all of the editable columns you can select and modify in a bulk update:
NUMERIC_PRECISION
NUMERIC_SCALE
USE_DATETIME_FORMAT
DATETIME_FORMAT
ATTRIBUTE_RECORD_STATUS
IS_UNIQUE
IS_PRIMARY_KEY
CONTAINS_ENUM_VALUES
INCLUDE_COLUMN_IN_SECURE_VIEW
INCLUDE_ARRAY_IN_CODE_GEN
ARRAY_RELATIONSHIP_NAME
ARRAY_RELATIONSHIP_DESCRIPTION
ARRAY_RELATIONSHIP_TYPE
ARRAY_RELATIONSHIP_JOIN_TYPE
RAW_TRANSFORMATION_TYPE
RAW_TRANSFORMATION_EXPRESSION
RAW_TRANSFORMATION_EXPRESSION_COMMENT
RAW_NULL_VALUE_EXPRESSION
SEMANTIC_LAYER_TRANSFORMATION_EXPRESSION
SEMANTIC_LAYER_TRANSFORMATION_EXPRESSION_COMMENT
RAW_ALIAS_NAME
SEMANTIC_LAYER_ALIAS_NAME
CONSOLIDATION_REGEX_SEARCH
CONSOLIDATION_SQL_EXPRESSION
These are all of the view-only columns you can select:
DATASOURCE_ID
DATASOURCE_NAME
DATASOURCE_TAG
DATASOURCE_VERSION_ID
VERSION_NUMBER
ATTRIBUTE_ID
ATTRIBUTE_PATH
ATTRIBUTE_NAME
PARENT_OBJECT
PARENT_ARRAY
ATTRIBUTE_LEVEL
ATTRIBUTE_ORDER
ATTRIBUTE_LAST_UPDATED_DATETIME
ATTRIBUTE_LAST_UPDATED_BY
POLYMORPHIC_VERSION_ID
SOURCE_DATA_TYPE
POLYMORPHIC_ATTRIBUTE_NAME
IS_ARRAY
ARRAY_TYPE
ARRAY_PRIMITIVE_TYPE
VERSION_STATUS_DATE
SAMPLE_VALUE
HAS_EMBEDDED_CONTENT
VERSION_STATUS
DATA_PLATFORM_DATA_TYPE

3. Verify the query successfully returns a list of attribute metadata

4. Download the results as a .csv file

5. Open the .csv file in either Excel or Google Sheets

6. Edit any editable columns as needed

7. Save (Excel) or download (Google Sheets) the file

8. Load the .csv into your stage




9. Run the bulk update stored procedure
When the stored procedure completes, the attribute metadata file will be moved to the archive folder.
call <database>.<schema>.sp_update_datapancake_attribute_metadata_core(
'@<stage_name>/<staged_attribute_metadata_filename>.csv',
'@<stage_name>/<archive_folder>/',
'<snowflake_username>'
);

10. Verify the integration completed successfully by running the following query
select * from datapancake.core.vw_integration_process
where user_name = 'BWOLFF'
order by integration_process_date desc;

Last updated