Destination Schema
Configuration for mapping source attributes to Snowflake data types, including precision, scale, datetime formats, primary key identification, and data quality indicators for Dynamic Tables.
Overview
Destination Schema metadata controls how source attributes map to Snowflake data types and identifies key characteristics for Dynamic Tables. Configure target schema here.
Snowflake Data Type Configuration
Data Platform Data Type
Data Platform Data Type (DATA_PLATFORM_DATA_TYPE)
Snowflake data type for this attribute
Examples:
VARCHAR,VARCHAR(n),NUMBER,NUMBER(p,s),TIMESTAMP_NTZ,DATE,BOOLEAN,VARIANTEditable - Override inferred type
DataPancake infers from source data; override when inference is incorrect or you need specific types/precision
Numeric Type Configuration
Data Platform Data Type Precision (DATA_PLATFORM_DATA_TYPE_PRECISION)
For numeric types, precision (total number of digits)
Editable - Applies to
DECIMAL,DEC,NUMERIC,NUMBERExample: For
NUMBER(10,2), precision is 10
Data Platform Data Type Scale (DATA_PLATFORM_DATA_TYPE_SCALE)
For numeric types, scale (number of decimal places)
Editable - Applies to
DECIMAL,DEC,NUMERIC,NUMBERExample: For
NUMBER(10,2), scale is 2
Note: Set based on known data ranges; avoid over-sizing (wastes storage).
DateTime Configuration
Data Platform Data Type DateTime Format (DATA_PLATFORM_DATA_TYPE_DATETIMEFORMAT)
Comma-separated list of valid Snowflake datetime formats
Used for accurate datetime parsing
Editable - Users can specify formats if inference is incorrect
Example:
'MM/DD/YYYY', 'YYYY-MM-DD', 'MM-DD-YYYY HH24:MI:SS'
Use DateTime Format (USE_DATETIME_FORMAT)
Boolean for using datetime formats in Dynamic Table SQL generation
Editable
FALSE: Usestry_to_{data_type}withAUTOdetectionTRUE: UsesDATA_PLATFORM_DATA_TYPE_DATETIMEFORMATfor parsing
When to use formats: Consistent formats, need precise control, AUTO unreliable.
When to use AUTO: Inconsistent/unknown formats, want Snowflake auto-detection.
Key Identification
Is Primary Key (IS_PRIMARY_KEY)
Boolean indicating if attribute is part of primary key
Editable - Multiple attributes can be marked (composite keys)
Used for metadata table generation and relationship tracking
Has All Unique Values (HAS_ALL_UNIQUE_VALUES)
Boolean indicating if all values in this version are unique
Editable - Mark based on data analysis
Useful for identifying potential primary keys
Data Quality Indicators
Is Enum (IS_ENUM)
Boolean indicating if version contains only enum values
Editable - Mark for categorical data (e.g., status codes)
Useful for validation and documentation
Has All Null Values (HAS_ALL_NULL_VALUES)
Boolean indicating if all values are null
Read-only - Detected during scanning
Useful for identifying unused attributes
Reference Fields (Read-only)
Shown for reference in Destination Schema tab:
ATTRIBUTE_PATH- Attribute identificationPOLYMORPHIC_ATTRIBUTE_NAME- Version nameSOURCE_DATA_TYPE- Source type referenceSAMPLE_VALUE- Data content referenceATTRIBUTE_FOREIGN_KEY_COLUMNS- Configured in Foreign Keys section
Data Type Selection
String types:
VARCHAR- Variable length without constraintsVARCHAR(n)- Known maximum lengthVARIANT- Truly variable type, preserve original structure
Numeric types:
Set precision/scale based on known data ranges
Balance flexibility vs. storage efficiency
Financial data: Use appropriate scale (typically 2-4 decimal places)
DateTime types:
DATE- Date onlyTIME- Time onlyTIMESTAMP_NTZ- Timestamp without timezoneTIMESTAMP_LTZ- Timestamp with local timezoneTIMESTAMP_TZ- Timestamp with timezone
See Snowflake data types documentation for details.
Common Scenarios
Correcting incorrect type inference:
Change
DATA_PLATFORM_DATA_TYPEto correct typeSet
DATA_PLATFORM_DATA_TYPE_PRECISIONandDATA_PLATFORM_DATA_TYPE_SCALEif numericVerify with sample data
Configuring datetime formats:
Check
SAMPLE_VALUEfor actual formatSet
DATA_PLATFORM_DATA_TYPE_DATETIMEFORMATwith correct format(s)Set
USE_DATETIME_FORMAT = TRUETest with code generation
Setting primary keys:
Identify attributes that uniquely identify records
Set
IS_PRIMARY_KEY = TRUE(multiple for composite keys)Verify uniqueness with
HAS_ALL_UNIQUE_VALUES
Optimizing numeric types:
Analyze actual data ranges
Set
DATA_PLATFORM_DATA_TYPE_PRECISIONto minimum neededSet
DATA_PLATFORM_DATA_TYPE_SCALEappropriately
Last updated
Was this helpful?